Why "System" is a Four-Letter Word

Cary Millsap (cary.millsap @hotsos.com) Hotsos Enterprises, Ltd. Oracle Applications User Group / Grapevine, Texas 9:45am-10:45am Thursday 16 June 2005

www.hotsos.com

Copyright © 1999–2005 by Hotsos Enterprises, Ltd.

Slide 1

hotsos

Introduction

- · Cary Millsap, hotsos.com
- Hotsos is <u>dedicated</u> to Oracle system performance
 - Education <u>www.hotsos.com/education</u>
 - Software <u>www.hotsos.com/products</u>
 - Services www.hotsos.com/services
- Two books
 - "OOP" for method and details
 - "TOTOT" for stories

www.hotsos.com

Copyright © 1999–2005 by Hotsos Enterprises, Ltd.

Agenda

- · Measuring "faster than"
- Amdahl's law
- · How a "faster system" can actually perform worse
- Bragan's law
- Summary
- Your questions

www.hotsos.com

Copyright © 1999–2005 by Hotsos Enterprises, Ltd.

Slide 3

hotsos.

How many of these have you heard?

_____ will make your system go x% faster.

- Adding more CPUs
- Upgrading to faster CPUs
- Adding more memory
- Adding a faster SAN
- Using solid-state disk
- Increasing your database buffer cache hit ratio to 99%
- Reducing your latch miss rate to 1%
- Tuning a SQL statement
- · Creating an index
- · Dropping an index

www.hotsos.com

Copyright © 1999–2005 by Hotsos Enterprises, Ltd.

The problem we'll address today: Making a "system go x% faster" is <u>not</u> always a good thing.

- · Two problems you have to watch out for...
 - "System is x% faster," but the users can't tell
 - Big waste of time, energy, money, ...
 - "System is x% faster," but things get much worse
 - That's right: investment creates more pain

www.hotsos.com

Copyright © 1999–2005 by Hotsos Enterprises, Ltd.

Slide 5

hotsos.

First, a definition: How do we measure "faster than"?

- I don't care how you define it, as long as you define it
- My definitions
 - A is x% faster than B if and only if $x = (B A)/B \times 100\%$
 - A is n times faster than B if and only if n = B/A
- Notice that x% can never exceed 100%
 - Unless you can figure out how to make A < 0 ☺

B (before)	A (after)	A is faster than B		
10	2	80%	5 times	
3	1	67%	3 times	
10	20	-100%	0.5 times	

www.hotsos.com

Copyright © 1999–2005 by Hotsos Enterprises, Ltd.

Quick quiz...

What end-user impact will be produced by a "50 times" performance improvement to inter-process communication latency?

- a) 50 times better response time
- b) 10 times better response time
- c) No change in response time
- d) It depends

d) It depends

- But upon what?

www.hotsos.com

Copyright © 1999–2005 by Hotsos Enterprises, Ltd.

Slide 7

hotsos

It depends upon how much the improved component was used to begin with.

- If the improved component accounted for...
 - 100% of the original response time,
 - ...then the new response time will be 98% (50x) faster

Floment	Old		New		Change	
Element	Sec	%	Sec	%		
IPC latency	10.000	100%	0.200	100%	98%	50×
all other	0.000	0%	0.000	0%	NaN	NaN
Total	10.000	100%	0.200	100%	98%	50×

www.hotsos.com

Copyright © 1999–2005 by Hotsos Enterprises, Ltd.

It depends upon how much the improved component was used to begin with.

- If the improved component accounted for...
 - 92% of the original response time,
 - ...then the new response time will be 90% (10x) faster

Floment	Old		New		Change	
Element	Sec	%	Sec	%	Char	ige
IPC latency	10.000	92%	0.200	19%	98%	50×
all other	0.870	8%	0.870	81%	0%	1×
Total	10.870	100%	1.070	100%	90%	10×

www.hotsos.com

Copyright © 1999–2005 by Hotsos Enterprises, Ltd.

Slide 9

hotsos.

It depends upon how much the improved component was used to begin with.

- If the improved component accounted for...
 - 0.1% of original response time,
 - ...then the new response time will be virtually 0% faster

Floment	Old		New		Change	
Element	Sec	%	Sec	%		
IPC latency	10.000	0%	0.200	0%	98%	50×
all other	9,990.000	100%	9,990.200	100%	0%	1×
Total	10,000.000	100%	9,990.200	100%	0%	1×

www.hotsos.com

Copyright © 1999–2005 by Hotsos Enterprises, Ltd.

Amdahl's law: Impact is proportional to the duration for which the improved component is used.

- · Amdahl's Law
 - Response time improvement is proportional to the duration for which the improved component is used
- Some examples...
 - "The TGV [French bullet train] can go 186 mph"
 - How much time will that save me in my commute to Dallas?
 - "SSD can execute I/O 100 times faster than RAID"
 - How much time will that save a program that spends 1% of its time doing I/O?

www.hotsos.com

Copyright © 1999–2005 by Hotsos Enterprises, Ltd.

Slide 11

hotsos.

Savepoint #1

Response time improvement for a <u>component</u> does <u>not</u> necessarily imply response time improvement for a <u>task</u>.

You'll never be able to predict how a task will respond unless you <u>look</u> at its response time profile.

www.hotsos.com

Copyright © 1999–2005 by Hotsos Enterprises, Ltd.

What does it mean to "make your system go x% faster?" _____ will make your system go x% faster. • What does a statement like this mean? - Every program on the host goes x% faster? - One or more programs go x% faster (but some don't)? • What about the other programs? • Are some faster, but by less than x%? • Are some actually slower than before? • Is this acceptable? • Is it acceptable to say that a "system will go x% faster," if some programs improve by less than x%?

Copyright © 1999–2005 by Hotsos Enterprises, Ltd.

Slide 13

www.hotsos.com

What your users want it to mean is probably trivial to disprove.

____ will make your system go x% faster.

• Your users want it to mean...

- "Every task in the application will be x% faster"

• But disproving that is probably trivial

- Find any task that's less than x% faster after doing ____

To you, a "system" is not the same as what your users think a "system" is.

What you think a system is...

What a user thinks a system is...

- CPU, memory, disk, network, ...?
- HP, Oracle, Apache, Java, ...?
- Presentation, logic, content, ...?
- GL, PO, AP, AR, HR, ...?
- · Key performance indicators?

• "The *m* screens and *n* reports that I use to get my job done"

www.hotsos.com

Copyright © 1999–2005 by Hotsos Enterprises, Ltd.

Slide 15

hotsos

Different tasks on the same system respond differently to a given "tuning" attempt.

- You saw already that a 50x improvement in a component can result in...
 - 50 times better task response time
 - 10 times better task response time
 - No change in task response time

Task	% of total response time used by the improved component before "tuning"	Performimprov	
Task A	100%	98%	50×
Task B	92%	90%	10×
Task C	0%	0%	1×

www.hotsos.com

Copyright © 1999–2005 by Hotsos Enterprises, Ltd.

Different tasks respond differently to "tuning" because different tasks have different profiles.

- Two tasks shown at right...
 - Different profiles
 - Different reactions to "tuning"
- Note
 - The right solution in both cases was to eliminate unnecessary work

Timed event	Duration	
db file scattered read	19,051.14	69.5%
CPU service	6,889.27	25.1%
db file sequential read	1,892.70	6.9%
unaccounted-for	-405.03	-1.5%
Total	27,428.08	100.0%

Timed event	Duration	
CPU service	8,735.16	99.7%
unaccounted-for	30.00	0.3%
latch free	0.23	0.0%
db file scattered read	0.13	0.0%
Total	8,765.52	100.0%

www.hotsos.com

Copyright © 1999–2005 by Hotsos Enterprises, Ltd.

Slide 17

hotsos

Savepoint #2

Vifferent tasks respond differently to "tuning" actions because different tasks have different profiles.

You'll never be able to predict how a task will respond unless you <u>look</u> at its response time profile.

www.hotsos.com

Copyright © 1999–2005 by Hotsos Enterprises, Ltd.

It's even possible for a "tuning" attempt to make a system performance problem worse.

- · Below is the "after" profile
 - After upgrading to 2x faster CPUs, total response time got worse
 - That's right; performance was better <u>before</u> the multi-\$k investment
 - What?!

Timed event	Duration		# Calls	Avg dur/call
SQL*Net message from client	984.01	49.6%	95,161	0.010 340
SQL*Net more data from client	418.82	21.1%	3,345	0.125 208
db file sequential read	279.34	14.1%	45,084	0.006 196
CPU service	248.69	12.5%	222,760	0.001 116
all other	54.33	2.7%	506	0.107 372
Total	1,985.19	100.0%		

www.hotsos.com

Copyright © 1999–2005 by Hotsos Enterprises, Ltd.

Slide 19

hotsos

How can improving a component make performance worse?

- Performance of your task gets worse if...
 - The "improvement" intensifies competition for the resource that is the bottleneck for <u>your</u> task
- The problem for this task was network competition
 - The CPU upgrade just made it worse
 - The fix took 10 minutes to implement and cost "nothing"

Timed event	Dur	Duration		Avg dur/call
SQL*Net message from client	984.01	49.6%	95,161	0.010 340
SQL*Net more data from client	418.82	21.1%	3,345	0.125 208
db file sequential read	279.34	14.1%	45,084	0.006 196
CPU service	248.69	12.5%	222,760	0.001 116
all other	54.33	2.7%	506	0.107 372
Total	1,985.19	100.0%		

www.hotsos.com

Copyright © 1999–2005 by Hotsos Enterprises, Ltd.

Savepoint #3

It's possible for improving a component to make your task's performance even worse.

You'll never be able to predict how a task will respond unless you <u>look</u> at its response time profile.

www.hotsos.com

Copyright © 1999–2005 by Hotsos Enterprises, Ltd.

Slide 21

hotsos.

Bragan's law: Sometimes, statistics aren't a reliable way to look at a problem.

- Bragan's law
 - "Say you were standing with one foot in the oven and one foot in an ice bucket. According to the percentage people, you would be perfectly comfortable."

www.hotsos.com

Copyright © 1999–2005 by Hotsos Enterprises, Ltd.

It is dangerous to try to communicate quantitatively about a "system" as if it were a single unit.

- Saying anything about the performance of a "system" is probably wrong
- Even something like this isn't good enough...
 - "99.9% of users are now ecstatic about system performance."
- What if the most important 10 of your 10,000 customers now have worse performance?

www.hotsos.com

Copyright © 1999–2005 by Hotsos Enterprises, Ltd.

Slide 23

hotsos

Savepoint #4

You'll never be able to predict how a task will respond to "tuning" unless you <u>look</u> at its response time profile.

www.hotsos.com

Copyright © 1999–2005 by Hotsos Enterprises, Ltd.

Summary points...

"Systems don't have performance; tasks have durations."
—Mike Ryan

- Communicating about "system performance" as if it were a single unit is misleading and harmful to the decision-making process...
 - It's bad communication
- Useful communication about system performance recognizes the importance of individual task durations
 - Tasks can respond very differently to a given "tuning" action
- To make informed decisions about improving performance, you need to study your tasks' response time profiles

www.hotsos.com

Copyright © 1999–2005 by Hotsos Enterprises, Ltd.